Considerations for Age-based Recommendations for Pneumococcal Conjugate Vaccine for Adults

Tamara Pilishvili, MPH

Respiratory Diseases Branch,
National Center for Immunizations and Respiratory Diseases

Advisory Committee on Immunization Practices
June 26, 2014

Policy Question

Should PCV13 be administered routinely to all adults 65 years of age or older?

Rationale for Considering PCV13 Use among Persons >65 Years Old

- ACIP universal recommendations for PPSV23 target this group
- CAPITA results for this age group
- Economic analyses favor PCV13 at age <u>>65</u>
 - Cost-effective strategies
 - Health benefits for all outcomes

ACIP 2012: GRADE results (pre-CAPITA)

- Evidence type/quality low (type 3)
 - Limited studies on efficacy against IPD (1 RCT in HIV+ adults)
 - No data on efficacy against pneumonia
- Uncertainty about the magnitude of expected health benefits and cost-effectiveness
 - Efficacy against non-bacteremic pneumonia unknown
 - Indirect effects from PCV13 use in children expected to reduce net benefits
 - Cost-effectiveness results sensitive to assumptions about PCV13 efficacy against pneumonia and expected herd effects

2012 ACIP decision:

Defer recommendation until critical data available on
1) efficacy against pneumonia
2) PCV13 herd effects

Critical Outcomes: Invasive Pneumococcal Disease (IPD) and Pneumococcal Non-bacteremic Pneumonia

		Vaccine Efficacy
Study/population	Endpoint	(95% CI)
CAPITA Adults 65+ Netherlands	PCV13-serotype IPD	75% (41%, 91%)
	PCV13-serotype non-bacteremic pneumonia	45% (14%,65%)

What effect might we expect among persons > 65 years old in the US?

CAPITA, ACIP June 2014

How many persons ≥65 years old would need to be vaccinated to prevent a single case of PCV13-type IPD or a single case of PCV13-type CAP?

Outcome (PCV13-type)	Baseline incidence (per 100,000 population)	Vaccine efficacy (95% CI)	Number needed to vaccinate ⁵	
IPD	6.5 ¹	75% (41%, 91%) ⁴	20,400 (16,950 - 37,000)	Caveat: VEvs. placebo
Inpatient CAP	137.5 ²	45% (14%, 65%) ⁴	1,620 (1,110 - 5,130)	Baseline estimates assume 10% of all CAP due to PCV13 -
Outpatient CAP	201 ³	45% (14%, 65%) ⁴	1,110 (760-3,500)	types
Total CAP	-	-	656 (454-2,110)	

- 1. PCV13-type IPD rate among adults ≥65 years old in the US. CDC, ABCs, 2013
- Simonsen et al Lancet Resp. Med 2014
- 3. Nelson et al. Vaccine 2008
- 4. CAPITA
- 5. Number-needed-to vaccinate (NNV) =1 / (Rate_{baseline} Rate_{vaccinated})

Quality of Evidence for using PCV13 to prevent IPD and pneumonia (updated GRADE-2014)

Outcome	Risk of bias	Inconsis- tency	Indirectness	Impreci- sion	Quality of evidence
IPD	No serious	N/A	Serious	No serious	2 1
Pneumonia	No serious	N/A	No serious	No serious	1

¹Indirectness due to different comparison group

- a. Placebo instead of PPSV
- b. PPSV efficacy against IPD among older adults = 50-80%

Quality of evidence (updated GRADE-2014)

Comparison	Outcome	Study Design (# studies)	Findings	Quality of evidence	Overall evidence type
PCV13 vs. no vaccination	IPD	RCT (1)	Decreased risk among vaccinated	2	\
PCV13 vs. no vaccination	Pneumonia	RCT (1)	Decreased risk among vaccinated	1	2
PCV7 or PCV13 vs. PPSV23	Immunogenicity	RCT (6)	Response improved for PCV vs. PPSV23 or no difference	2	
PCV13 vs. PPSV23	Serious and systemic adverse events	RCT (3)	No difference or decreased risk with PCV13	1	

GRADE Conclusions in 2014 vs. 2012

	2012	2014	Comments
Is the evidence type/quality of evidence considered to be lower?	Y	N	- Data on efficacy against critical outcomes available
Is there uncertainty about the balance of benefits versus harms and burdens?	Y	N Y	Short-term: No uncertainty about the balance Long-term: Indirect effects likely reduce net benefits
Is there high variability or uncertainty in relative importance assigned to outcomes?	N	N	- General consensus reached on which outcomes are critical to prevent
Is there uncertainty about whether the net benefits are worth the costs?	Y	N Y	Short-term: No uncertainty Long-term: uncertainty about
			whether the net benefits are worth the costs due to continued herd effects

Herd effects on IPD: Incidence of Invasive Pneumococcal Disease Among Adults >65 Years by Serotype, 1998-2013

Active Bacterial Core Surveillance, unpublished

PCV13 herd effects on non-bacteremic pneumonia, 2011-2012

	All-cause pneumonia	Invasive pneumococcal disease	Non-invasive pneumococcal or lobar pneumonia	Empyema
<2 years	21% (14 to 28)*	64% (47 to 75)*	40% (14 to 59)*	50% (22 to 68)*
2–4 years	17% (7 to 27)*	55% (16 to 75)*	33% (-3 to 56)	46% (21 to 64)*
5–17 years	-3% (-20 to 11)	25% (-24 to 54)	51% (29 to 66)*	37% (13 to 54)*
18-39 years	12% (6 to 17)*	37% (20 to 51)*	32% (17 to 44)*	-8% (-25 to 6)
40-64 years	2% (-2 to 6)	13% (-1 to 26)	25% (16 to 33)*	-4% (-13 to 3)
≥65 years	3% (-1 to 6)	29% (16 to 40)*	34% (27 to 41)*	-1% (-10 to 7)

Data are percentage change (95% CI) according to our model. Assumes vaccine coverage at March, 2012 level. *Significant reduction (p<0.05).

Table 3: Proportion of seasonal admissions to hospital averted by vaccination per season at coverage achieved in March, 2012

Indirect Effects

- □ PCV7 introduction led to near elimination of PCV7type IPD among adults of all age groups
- Evidence of continued declines in PCV7-type IPD in adults due to herd effects
- □ Indirect effects of pediatric PCV13 program have further reduced the proportion of adult IPD and pneumonia caused by PCV13 types
- □ Studies report reduction in non-bacteremic pneumonia in adults following PCV7 and PCV13 introduction in children

Key point: The expected benefits of PCV13 use among adults will decline over time

Estimating PCV13 –type disease <u>burden</u> among adults 65 years or older in a setting of herd effects

Estimated US cases without direct PCV13 use in adults

Outcome (PCV13 type)	2013	2015 (20% reduction due to herd effects*)	2019 (86% reduction due to herd effects*)
IPD	2,660	2,130	370
Inpatient CAP	56,380	45,100	7,890
Outpatient CAP	82,410	65,930	11,540
Total CAP	138,790	111,030	19,430

^{*}Based on post-PCV7 experience

Estimating cases potentially <u>preventable</u> among adults 65 years or older

Estimated US cases potentially <u>preventable</u>

Outcome (PCV13 type)	 2015 20% reduction due to herd effects* PCV13 direct effects** Coverage 10% (5%-30%) 	 2019 86% reduction due to herd effects* PCV13 direct effects** Coverage 30% (20%-60%)
IPD	160 (80-480)	80 (50-170)
Inpatient CAP	2,030 (1,020-6,090)	1,070 (700 -2,130)
Outpatient CAP	2,970 (1,480-8,900)	1,560 (1,040 – 3,120)
Total CAP	5,000 (2,500-14,990)	2,630 (1,740 – 5,250)

^{*}Based on post-PCV7 experience

^{**}Assume PCV13 VE=75% (IPD) and 45% (CAP)

PCV13 age-based recommendations: Summary of presented evidence

- Strong quality (type 2) of evidence supports the use of PCV13 among adults
 - PCV13 is safe for use among adults
 - PCV13 is efficacious in preventing IPD and non-bacteremic pneumonia among adults <u>></u>65 years old
- Vaccine preventable disease burden remaining among adults 65 years or older
- Adding a dose of PCV13 to existing recommendations for PPSV23 is a cost-effective strategy and prevents illness among adults <u>></u>65 years old
- Herd effects will continue to reduce PCV13-type disease burden and limit the utility of PCV13 use among adults in the long term

Policy options under consideration

- Add a dose of PCV13 at age ≥ 65 years to currently recommended PPSV23 regimen
 - PCV13 dose followed by a dose of PPSV23 at age <u>> 65 years</u>
 - Risk-based recommendations for PCV13 and PPSV23 use remain unchanged
- Replace a dose of PPSV23 at age > 65 years with a dose of PCV13
 - PCV13 at age \geq 65 years
 - Risk-based recommendations for PCV13 and PPSV23 use remain unchanged

Desirable characteristics of pneumococcal vaccine for universal use among adults <u>></u>65 years

	PCV13	
Prevents IPD	+	75% reduction in vaccine type IPD
Prevents non-bacteremic pneumonia	+	45% reduction in vaccine type non- bacteremic pneumonia
 Provides adequate coverage of serotypes causing disease 	+/	 Yes, in the short-term Unclear, long-term (herd effects)
Allows for policy change that is simple to implement		 Policy options under consideration add complexity to current PCV/PPSV recommendations Simplified strategies result in more IPD
Cost-effective	+/	 Yes, short-term Not cost-effective in a setting of fully observed herd effects

PCV13 age-based recommendations: Work Group Conclusions

- In the short-term, a recommendation for universal PCV13 use is warranted
- In the long-term, continued herd effects may limit the utility of a universal recommendation
- Policy options under consideration add complexity to current PCV13/PPSV23 recommendations
 - appropriate sequence and intervals between PCV13 and PPSV23
 - previous PCV13 and/or PPSV23 history
- Need to draft policy language addressing the concerns around
 - the complexity of current pneumococcal recommendation
 - time limited utility of universal PCV13 use
- Opportunity to prevent disease during the 2014-2015 respiratory season; timely implementation may require a decision before October ACIP meeting

Questions to ACIP

- What concerns do you have about the proposed policy options?
- How should the expected decline in the utility of the recommendation influence PCV13 recommendations?
- How feasible would it be to have a time limited recommendation?

Policy options under consideration

- Add a dose of PCV13 at age <u>></u>65 years to currently recommended PPSV23 regimen
 - PCV13 dose followed by a dose of PPSV23 at age <u>> 65 years</u>
 - Risk-based recommendations for PCV13 and PPSV23 use remain unchanged
- Replace a dose of PPSV23 at age > 65 years with a dose of PCV13
 - PCV13 at age \geq 65 years
 - Risk-based recommendations for PCV13 and PPSV23 use remain unchanged